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Abstract. We study a spin-1 infinite-ranged Ising spin-glass model with uniform biquadratic
exchange interactions. The phase diagram of the model is obtained in the framework of the
replica-symmetric solution. For the case of attractive biquadratic interactions the usual spin-
glass phase is stabilized at low temperatures, but for the repulsive case, the antiquadrupolar and
antiquadrupolar-glass phases with two-sublattice structure are also possible. We investigate the
stability of the replica-symmetric solution and show that the paramagnetic and antiquadrupolar
phases are stable, whereas the spin-glass and antiquadrupolar-glass phases are unstable. Parisi’s
replica-symmetry-breaking procedure is implemented in the neighbourhood of the spin-glass–
paramagnetic critical frontier.

1. Introduction

The properties of the infinite-range Ising spin-glass model introduced by Sherrington and
Kirkpatrick (SK) [1] have been investigated intensively [2–4]. Such a formulation, which
is believed to represent the proper mean-field (MF) approximation for the Ising spin glass,
has produced some novel and outstanding results. The rich formalism developed for the
SK model has gone far beyond the area of disordered magnetic systems, being employed
nowadays in many other complex systems, like neural networks and optimization problems.
Even if it happens not to be appropriate for the description of short-range spin glasses, better
approximations should consider such a theory as a starting point; indeed, many experimental
observations seem to be in good agreement with the predictions of the SK model.

In order to attain a better understanding of the behaviour of real spin glasses, a variety of
other infinite-range spin-glass models have been proposed, including Potts, spin-S (S > 1/2)
and vector spin-glass models [3, 4]. New phases, characterized by different classes of order
parameters, have emerged, opening many controversial problems from both the theoretical
and experimental points of view.

In this paper we wish to consider an infinite-range spin-1 glass model described by the
Hamiltonian

H = −
∑
(ij)

Jij SiSj +D
∑
i

S2
i −

K

N

∑
(ij)

S2
i S

2
j (1)

where Si = 0,±1, the (ij) sums extend over all distinct pairs of spins,D is a crystal
field andK, the biquadratic interaction. We assume that the bilinear interactions{Jij } are

0305-4470/97/072317+12$19.50c© 1997 IOP Publishing Ltd 2317



2318 F A da Costa et al

quenched, independent random variables following a Gaussian probability distribution

P(Jij ) =
(

N

2πJ 2

)1/2

exp

[
−N(Jij − J0/N)

2

2J 2

]
. (2)

The presence ofN , the total number of spins, in the biquadratic interaction term, as well as in
the probability distribution, is necessary to ensure extensivity of thermodynamic quantities.
In the limit of no randomness in the bilinear exchange (J = 0), this model reduces to the
infinite-range version—equivalent to the MF approximation—of the Blume–Emery–Griffiths
(BEG) model [5].

Recently, there has been a growing interest in the study of orientational (or quadrupolar)
glasses from both experimental and theoretical points of view [6]. Basically, they consist in
dilute molecular systems, representing random alloys of interacting quadrupoles, from which
the most commonly studied are the mixed alkali cyanides and solid ortho-para-hydrogen
mixtures. In the latter systems, the para species (spherically symmetric) play the role of
dilution among the ortho (orientable) molecules; for certain ortho-hydrogen concentrations,
a low-temperature phase has been observed in which the orientational degrees of freedom
of the ortho molecules freeze into a quadrupolar-glass state [7]. Clearly, such systems are
expected to present many properties in common with spin glasses, although their theoretical
understanding is still far behind. Many quadrupolar-glass models have been proposed as
candidates to describe experimental data, most of them with random biquadratic interactions
[6]. The model defined through Hamiltonian (1), due to the uniform biquadratic interactions,
represents a much simpler theoretical system with axial symmetry, in which quadrupolar-
glass behaviour is present.

The model (1) withK = 0 and distribution (2) withJ0 = 0 has been analysed by various
authors [8–12]. As in the case of the MF phase diagram of the BEG model [5], the spin-glass
version was shown to exhibit second- and first-order transitions separated by a tricritical
point. It is known that the introduction of the biquadratic exchange term has profound effects
on the phase diagram of the MF BEG model [13]. In particular, for repulsive biquadratic
interactions (K < 0), the antiquadrupolar ordering with a two-sublattice structure may be
stabilized [14, 15]. In order to describe the two-sublattice phases in the infinite-range model
of spin glass, it is necessary to take this possibility into account following the prescription
of Korenblit and Shender [16]. Accordingly, we will modify (1) into a two-sublattice
Hamiltonian

H = −
∑

i∈A,j∈B

JijSiSj +D
∑
i∈A,B

S2
i −

K

N

∑
i∈A,j∈B

S2
i S

2
j (3)

where A and B denote the two sublattices withN sites each. We will set up the basic
equations for the full Hamiltonian (3) and distribution (2) withJ0 = 0, but a detailed
discussion will be limited to the caseD = 0.

This paper is organized as follows. In section 2 we apply the replica method to
the two-sublattice Hamiltonian (3) and obtain the stationary equations which describe the
system. The replica-symmetric solutions are analysed in section 3. We draw a phase
diagram exhibiting four phases namely, the paramagnetic, the antiquadrupolar, spin-glass
and antiquadrupolar-glass phases. In section 4 we carry out the stability analysis of the
replica-symmetric solution and show its instability throughout both glass phases. It is
argued that the critical frontier separating the two glass phases should change within a more
appropriate solution. The Parisi solution is implemented in the neighbourhood of the spin-
glass–paramagnetic critical frontier and an order-parameter function, similar to that of the
SK model, is found. Finally, we present our conclusions in section 6.
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2. The replica method

Using the standard replica method [2–4], the free energy per spinf of the system described
by Hamiltonian (3) is given by

f = −β−1 lim
n→0

1

n

(
lim
N→∞

1

2N
lnZn

)
(4)

whereβ = 1/kBT and the bar denotes a configurational average. EvaluatingZn for integer
n we find

Zn = Tr exp

{
(βJ )2

N

∑
(αβ)

(∑
i∈A

Sαi S
β

i

)(∑
j∈B

Sαj S
β

j

)
− βD

∑
α

[∑
i∈A

(Sαi )
2+

∑
j∈B

(Sαj )
2

]

+ β
N

(
K + βJ

2

2

)∑
α

[∑
i∈A

(Sαi )
2

][∑
j∈B

(Sαj )
2

]}
(5)

where(αβ) denotes all distinct pairs of replicas (α, β = 1, 2, . . . , n). Using the identity

εAB = 1
2[A2+ B2− (A− εB)2] (6)

whereε = ±1, to rewrite the products of sums of spin variables in different sublattices in
terms of squares of these quantities and linearizing the resultant expression in the standard
way [1], we get

Zn =
∏
α

[(
βN

2π

∣∣∣∣K + βJ 2

2

∣∣∣∣)3/2 ∫ ∞
−∞

dxαA

∫ ∞
−∞

dxαB

∫ i∞

−i∞

dxα

i

]
×
∏
(αβ)

[(
β2J 2N

2π

)3/2 ∫ ∞
−∞

dyαβA

∫ ∞
−∞

dyαβB

∫ i∞

−i∞

dyαβ

i

]
exp(−Nφ) (7)

where i= √−1 and

φ = β

2

∣∣∣∣K + βJ 2

2

∣∣∣∣∑
α

[(xαA)
2+ (xαB)2− (xα)2] + (βJ )

2

2

∑
(αβ)

[(yαβA )2+ (yαβB )2− (yαβ)2]

− ln Tr exp(HA)− ln Tr exp(HB). (8)

The effective sublattice HamiltoniansHA,B are given by

HA =
∑
α

[
β

∣∣∣∣K + βJ 2

2

∣∣∣∣(xαA − xα)− βD](Sα)2+ (βJ )2∑
(αβ)

(y
αβ

A − yαβ)SαSβ (9)

HB =
∑
α

[
β

∣∣∣∣K + βJ 2

2

∣∣∣∣(xαB + εxα)− βD](Sα)2+ (βJ )2∑
(αβ)

(y
αβ
B + yαβ)SαSβ (10)

whereε = sgn(K + βJ 2/2).
In the limit N → ∞ we can integrate out the variablesxα andyαβ using the steepest

descent method. The saddle-point equations for these variables are

xα = 〈(Sα)2〉A − ε〈(Sα)2〉B
yαβ = 〈SαSβ〉A − 〈SαSβ〉B

(11)

where〈· · ·〉A,B denote averages with respect to the effective HamiltoniansHA,B. Inserting
the saddle-point values ofxα andyαβ given by (11) into expression (8) forφ, the integrations
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with respect to the variablesxαA, xαB, yαβA andyαβB in equation (7), can be performed using
the Laplace method. However, it is more convenient to work with the variables

pαA = ε(xαB + εxα) pαB = ε(xαA − xα)
q
αβ

A = yαβB + yαβ q
αβ
B = yαβA − yαβ.

(12)

In terms of these new variables the functionalφ, defined in equation (8), becomes

φ = β

2

∣∣∣∣K + βJ 2

2

∣∣∣∣∑
α

[(pαA − 〈(Sα)2〉A)− ε(pαB − 〈(Sα)2〉B)]2+ (βJ )
2

2

×
∑
(αβ)

[(qαβA − 〈SαSβ〉A)− (qαβB − 〈SαSβ〉B)]2+ β
(
K + βJ

2

2

)
×
∑
α

pαAp
α
B + (βJ )2

∑
(αβ)

q
αβ

A q
αβ
B − ln Tr exp(HA)− ln Tr exp(HB) (13)

where the effective sublattice Hamiltonians (9) and (10) are given in terms of these new
variables by

HA,B =
∑
α

β

[(
K + βJ

2

2

)
pαB,A −D

]
(Sα)2+ (βJ )2

∑
(αβ)

q
αβ

B,AS
αSβ. (14)

In the limit N →∞ the free energy per spin (4) is obtained according to the Laplace
method as

f = kBT

2
lim
n→0

1

n
min[φ]. (15)

The condition for the functionalφ given by (13) to be stationary is given by the equations

pαA,B = 〈(Sα)2〉A,B q
αβ

A,B = 〈SαSβ〉A,B. (16)

The elementspαA,B (α = 1, 2, . . . , n) and qαβA,B (α, β = 1, 2, . . . , n) in the previous
equations, represent the quadrupolar and spin-glass order parameters on each sublattice,
respectively. As the result of the biquadratic interactions, the quadrupolar parameterspαA,B

are always non-zero. On the other hand, the spin-glass parametersq
αβ

A,B, which are zero at
high temperatures, may turn up at low temperatures, signalling a spin-glass behaviour. In
the next section, we will consider the simplest parametrization for the parameterspαA,B and

q
αβ

A,B.

3. The replica-symmetric solution

The replica-symmetric solution is obtained by assuming that the order parameterspαA,B and

q
αβ

A,B are independent of the replica indices,

pαA,B = pA,B q
αβ

A,B = qA,B. (17)

Proceeding in the usual way [1], we find that the stationary conditions (16) become

pA,B =
∫ ∞
−∞

dx√
2π

exp(−x2/2)ϕA,B
2 (x) (18)

qA,B =
∫ ∞
−∞

dx√
2π

exp(−x2/2)[ϕA,B
1 (x)]2. (19)
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The functionsϕA,B
k (x) are defined by

ϕ
A,B
k (x) = Tr Sk exp[HA,B(x)]

Tr exp[HA,B(x)]
(20)

where the trace is taken over the possible spin values (S = 0,±1) and the effective sublattice
hamiltoniansHA,B(x) are given by

HA,B(x) = βJ√qB,AxS + β
[(
K + βJ

2

2

)
pB,A −D − βJ

2

2
qB,A

]
S2. (21)

Also the free energy per spin (15) becomes

f = 1

2

(
K + βJ

2

2

)
pApB − βJ

2

4
qAqB − 1

2β

∫ ∞
−∞

dx√
2π

exp(−x2/2) ln Tr exp[HA(x)]

− 1

2β

∫ ∞
−∞

dx√
2π

exp(−x2/2) ln Tr exp[HB(x)]. (22)

We performed numerical studies of the above equations for the case of zero crystal field
(D = 0) and found that four types of phases are possible, depending on the temperatureT

and the biquadratic exchangeK:
1. Paramagnetic(P): pA = pB andqA = qB = 0.
2. Antiquadrupolar(AQ): pA 6= pB andqA = qB = 0.
3. Spin glass(SG):pA = pB andqA = qB 6= 0.
4. Antiquadrupolar glass(AQG): pA 6= pB andqA 6= qB.
As a typical result, we show in figures 1(a) and 1(b) the possible solutions of equations

(18) and (19) found forK/J = −3.5. In figure 1(a) we exhibit the possible solutions of
the quadrupolar parameterspA,B as a function of the temperature. One notices that the
paramagnetic solution is always present, although it is stable only at high temperatures. For
intermediate temperatures, the two-sublattice structure withpA 6= pB emerges (apart from
the presence of the solutions withpA = pB), representing the stable solutions. Finally, at
low temperatures the spin-glass solution withpA = pB becomes stable. A similar scenario
is observed for the spin-glass parametersqA,B in figure 1(b).

The boundary between the paramagnetic and spin-glass phases is given by the vanishing
of the spin-glass order parameterq in the solutionqA = qB = q andpA = pB = p of the
equations (18) and (19). The resultant line can be expressed as

K

J
= − J

2kBT
− ln

[
2

(
J

kBT
− 1

)]
. (23)

The boundary between the paramagnetic and antiquadrupolar phases is determined by the
vanishing of the staggered quadrupolar order parameterps = (pA − pB)/2 in the solution
qA = qB = 0, pA = p + ps andpB = p − ps of (18) and (19). The resultant line is given
by

K

J
= − 1

p(1− p)
kBT

J
− J

2kBT
(24)

wherep = 0.316 498. . . is the solution of the equation

p

[
1+ 1

2
exp

(
1

1− p
)]
= 1. (25)

The two transition lines P–SG and P–AQ, given by (23) and (24), respectively, meet at
the multicritical point

kBT

J
= 0.316 498. . .

K

J
= −3.042 839. . . . (26)
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Figure 1. Thermal variation of the possible solutions associated with the (a) quadropolar and
(b) spin-glass order parameters forK/J = −3.5.

The stability limit of the antiquadrupolar-glass phase is determined by the simultaneous
vanishing of the staggered spin-glass order parameterqs = (qA − qB)/2 and the staggered
quadrupolar order parameterps = (pA − pB)/2 in the solutionqA = q + qs, qB = q − qs,
pA = p + ps andpB = p − ps of (18) and (19). Ifq = (qA + qB)/2 = 0 the transition is
to the antiquadrupolar phase, whereas ifq > 0 the transition is to the spin-glass phase.

The phase diagram within the replica-symmetric solution is exhibited in figure 2. All
critical lines correspond to second-order phase transitions; indeed (26) is a tetracritical point,
where four second-order critical lines meet. For pure systems, pairs of lines are supposed
to meet with the same slope at the tetracritical point. This criterion seems not to hold for
spin glasses, being violated in several systems, e.g., the SK model, vector and Potts spin
glasses [3, 4]. This is also clearly violated in our phase diagram. For values ofK/J to the
right of the multicritical point (26), one finds a single phase transition (P–SG) by lowering
the temperature. However, for values ofK/J to the left of the multicritical point (26),
several phase transitions become possible as the temperature decreases. In particular, in the
range−7.5 < K/J < −3.04 one may get three consecutive phase transitions by lowering
the temperature, as one goes through the phases P→ AQ→ AQG→ SG. Usually, phase
transitions are associated with a breakdown of symmetry, accompanied by the onset of
some new type of order, signalled by order parameters. Therefore, the appearance of an
order parameter is commonly connected to a decrease in the entropy of the system. Hence,
between the two glass phases, the spin-glass is expected to be the one with the higher
entropy. In our phase diagram, one sees that the spin-glass (higher-entropy phase) ‘enters’
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the antiquadrupolar-glass (lower-entropy phase) at low temperatures. As the temperature
is diminished, one goes through three phases (P→ AQ → AQG), corresponding to a
gradual decrease in the entropy and finally to that for SG, where the entropy increases.
This is analogous to what happens in the SK model, for a certain range ofJ0/J , within the
replica-symmetric solution: one goes from a paramagnetic (high entropy) to a ferromagnetic
(low entropy), and then to the SG phase. Although the system does not return to its high-
temperature phase, this phenomenon is usually referred to as a ‘reentrance’ in the spin-glass
literature. In that sense, the critical line AQG–SG also corresponds to a ‘reentrant’ phase
transition. In the SK model, this effect is associated with the instability of the replica-
symmetric solution at low temperatures; in the next section we will show that such a
solution is unstable throughout both AQG and SG phases.

Figure 2. Phase diagram as a function of the temperatureT and the biquadratic exchange
constant K, showing the paramagnetic (P), antiquadropolar (AQ), spin-glass (SG) and
antiquadropolar-glass (AQG) phases.

4. Stability analysis of the replica-symmetric solution

For the application of the Laplace method to be consistent, the replica-symmetric solution
(18) and (19) should correspond to theminimum of the functionalφ given by (13).
Following de Almeida and Thouless [17], we consider the Hessian matrix of sizen(n+ 1)
constructed from the second derivatives of the functionalφ with respect to the variables
pαA,B andqαβA,B. Proceeding in the standard way [17], the eigenvalues of the Hessian matrix
can be determined by finding the eigenvectors which divide the space into orthogonal
subspaces, closed under replica-index permutations. These eigenvectors are classified into
three categories [18]: (a) 4longitudinal eigenvectors independent of replica indices; (b)
4(n−1) anomalouseigenvectors depending on a single replica index; (c)n(n−3) transversal
or replicon eigenvectors depending on two replica indices. In the limit ofn → 0 the
eigenvalues of the longitudinal and anomalous eigenvectors coincide and are given by the
eigenvalues of a 4×4 matrixL, whereas those associated with the transversal eigenvectors
are given by the eigenvalues of a 2× 2 matrixT .
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Let us first consider the eigenvalues associated with thetransversaleigenvectors. They
are the eigenvalues of the matrixT with the elements given by

T11 = (βJ )2(1+WB +W 2
B) (27)

T12 = T21 = −(βJ )2(WA +WB +WAWB) (28)

T22 = (βJ )2(1+WA +W 2
A) (29)

where

WA,B = (βJ )2
∫ ∞
−∞

dx√
2π

exp(−x2/2){[ϕA,B
2 (x)]2− 2[ϕA,B

1 (x)]2ϕA,B
2 (x)+ [ϕA,B

1 (x)]4}. (30)

For the replica-symmetric solution to be stable, the eigenvalues ofT should be positive. The
necessary and sufficient conditions for this areT11 > 0, T22 > 0 andT11T22− T12T21 > 0.
The first two conditions are always satisfied, whereas the last condition is equivalent to

WAWB < 1. (31)

We found numerically that condition (31) is always satisfied in the paramagnetic and
antiquadrupolar phases, but violated in the spin-glass and antiquadrupolar-glass phases.

The eigenvalues associated with the longitudinal and anomalous eigenvectors, given by
the eigenvalues of the matrixL (see appendix A), were also studied. A numerical analysis
of such eigenvalues revealed that they are always real and positive in the paramagnetic and
antiquadrupolar phases. However, they may become negative (or even complex, as already
observed in similar problems [9, 12]) in the spin-glass and antiquadrupolar-glass phases.

Therefore, the replica-symmetric solution considered in the previous section becomes
unstable at low temperatures, throughout both glass phases. From the critical frontiers
exhibited in figure 2, P–AQ is inside a stable region, whereas P–SG and AQ–AQG are in
the extreme limit for stability of the replica-symmetric solution; such critical lines should
not change when one considers solutions in the full replica space. However, the critical
frontier AQG–SG is completely inside the unstable region and its location is expected to
change within a suitable replica-symmetry-breaking scheme. In the next section we discuss
the appropriate low-temperature solution.

5. The Parisi solution

It is a well known fact [2–4] that the instability of the replica-symmetric solution is caused by
the assumption that the spin-glass parameters (two-replica indices) are replica-independent;
a similar hypothesis for single-replica parameters does not bring any harmful consequences.
The parametrization proposed by Parisi [19, 20] for the SK model, although not fully
justifiable, is believed to represent the correct solution for such problem [3]. It consists
of a hierarchical procedure in which then × n spin-glass matrix is broken into blocks
according to certain symmetry rules. The same procedure is repeated for the diagonal
blocks, and at each step different parameters are introduced. In then→ 0 limit, we are left
with an order-parameter function (i.e., an infinite number of order parameters), defined on
the interval [0,1]. This scheme has been carried out on other systems, where similarn× n
spin-glass matrices appear, under the same motivation of the one in the SK model, i.e. as an
attempt to find a low-temperature stable solution. Due to special symmetry properties, which
yield extra terms in the free-energy functional, a single step in the hierarchical process may
be enough to ensure stability in some cases, like in the Potts glass [21]. Mostly common
however, are spin-glass systems with a replica-symmetry-breaking scheme analogous to the
one of the SK model, i.e. a full hierarchical procedure should be followed to attain stability,



Spin-glass model with uniform biquadratic interactions 2325

like m-vector spin glasses [22]. In our case, although this procedure may be implemented
throughout both glass phases, we shall restrict its application here for the spin-glass one,
in the neighbourhood of its frontier with the paramagnetic phase. In this case, the two-
sublattice structure is not necessary and we get the free-energy per spin,

f = kBT lim
n→0

1

n
min[φ] (32)

where

φ = β

2

(
K + βJ

2

2

)∑
α

(pα)2+ (βJ )
2

2

∑
(αβ)

(qαβ)2− ln Tr exp(H) (33)

H = β
(
K + βJ

2

2

)∑
α

pα(Sα)2+ (βJ )2
∑
(αβ)

qαβSαSβ. (34)

Following the preceding discussion, we shall consider the replica-symmetric solution
only for then elements of the quadrupolar parameter, i.e.pα = p (α = 1, 2, . . . , n). Near
the critical frontier SG–P, the spin-glass matrix elementsqαβ are small and we may carry
out a power-series expansion for the functionalφ, as shown in appendix B. One sees that the
terms inqαβ are similar to the ones which appear in the corresponding expansion of the SK
model [3] (except for the coefficients which assume different values, although preserving
the same signs as those of the SK model).

Inspired in the procedure adopted for the SK model, the Parisi prescription [20] may
be implemented for the present case, and we get a free-energy functionalf [p, q(x)] (see
equation (B.3) in appendix B), whereq(x) is a function defined in the interval [0, 1].
The replica-symmetric solution considered in section 3 is given byq(x) = constant, i.e.,
q ′(x) = 0. We are then interested in solutions withq ′(x) 6= 0, which may be obtained
by following the standard procedure, i.e., taking successive derivatives of the equilibrium
condition,

1

q ′(x)
d

dx

1

q ′(x)
d

dx

δ(βf )

δq(x)
= −6A3x +O(qm) = 0

d

dx

1

q ′(x)
d

dx

1

q ′(x)
d

dx

δ(βf )

δq(x)
= −6A3+ 24(A4+ B4x

2)q ′(x)+O(qm) = 0 (35)

whereqm represents the maximum value assumed by the functionq(x). The equilibrium
condition (δ(βf )/δq(x) = 0), together with equations (35) yield a function which to lowest
order, is given by

q(x) =
{
(A3/4A4)x 06 x 6 x1

qm x1 6 x 6 1
(36)

wherex1 = 4A2A4/3A2
3 andqm = q(1) = A2/3A3. The functionq(x) in (36) is similar to

that found for the SK model, i.e., a monotonically increasing piece, followed by a plateau.
Such an order-parameter function should remove the instability signalled by the negative
eigenvalue (although a marginal zero eigenvalue is still expected). However, a complete
analysis of the stability of the Parisi solution [23] for the present problem turns out to be a
difficult task which is beyond the scope of this paper.

6. Discussion

We have investigated an infinite-range spin-1 glass model in the presence of biquadratic
uniform interactions. The model was properly analysed by applying the replica method
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on a two-sublattice Hamiltonian. The replica-symmetric solution was studied in detail and
a phase diagram obtained with four phases, namely: paramagnetic, antiquadrupolar, spin-
glass and antiquadrupolar-glass ones. In contrast to the Ghatak–Sherrington spin-1 Ising
glass, there is no possibility of first-order transitions. A ‘reentrance’ effect, with the spin-
glass penetrating the antiquadrupolar-glass phase for a certain range of the biquadratic
interaction parameter, has been observed. We have performed a stability analysis of
the replica-symmetric solution and have shown its instability at low temperatures, i.e.,
throughout both glass phases. The Parisi replica-symmetry-breaking scheme was considered
in the neighbourhood of the spin-glass-paramagnetic critical frontier, and an order-parameter
function was obtained, qualitatively similar to that of the Sherrington–Kirkpatrick model.
Although possible, the analysis of the Parisi solution valid throughout both glass phases
turns out to be a harder task; we believe that within this approach, the reentrance mentioned
above should disappear, similar to what happened to the reentrance observed in the phase
diagram of the Sherrington–Kirkpatrick model. We speculate that the correct spin-glass–
antiquadrupolar-glass critical frontier should be a vertical straight line.

Although we are not aware of any experimental data in agreement with our results,
we believe that the present model should be appropriate for the description of quadrupolar
glasses with axial symmetry; due to uniform biquadratic interactions, it represents a much
simpler model to deal with as compared to those usually employed in the study of such
systems.
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Appendix A. The matrix L

In the stability analysis of the replica-symmetric solution, the eigenvalues associated with
the longitudinal and anomalous eigenvectors coincide in then→ 0 limit. They are given
by the eigenvalues of a 4× 4 matrixL, with elements given by,

L11 = β
∣∣∣∣K + βJ 2

2

∣∣∣∣(1+ SB + S2
B − 2U2

B) (A.1)

L22 = β
∣∣∣∣K + βJ 2

2

∣∣∣∣(1+ SA + S2
A − 2U2

A) (A.2)

L12 = L21 = −εβ
∣∣∣∣K + βJ 2

2

∣∣∣∣(SA + SB + SASB − 2εUAUB) (A.3)

L13 = −1

2
L31 = −ε(βJ )

(
β

∣∣∣∣K + βJ 2

2

∣∣∣∣)1/2

(1+ SB + VB)UB (A.4)

L24 = −1

2
L42 = −ε(βJ )

(
β

∣∣∣∣K + βJ 2

2

∣∣∣∣)1/2

(1+ SA + VA)UA (A.5)

L14 = −1

2
L41 = (βJ )

(
β

∣∣∣∣K + βJ 2

2

∣∣∣∣)1/2

(UA + εUB + SBUA + εUBVA) (A.6)

L23 = −1

2
L32 = (βJ )

(
β

∣∣∣∣K + βJ 2

2

∣∣∣∣)1/2

(UB + εUA + SAUB + εUAVB) (A.7)

L33 = (βJ )2(1+ VB + V 2
B − 2U2

B) (A.8)
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L44 = (βJ )2(1+ VA + V 2
A − 2U2

A) (A.9)

L34 = L43 = −(βJ )2(VA + VB + VAVB − 2εUAUB) (A.10)

where

SA,B = β
∣∣∣∣K + βJ 2

2

∣∣∣∣ ∫ ∞−∞ dx√
2π

exp(−x2/2){ϕA,B
4 (x)− [ϕA,B

2 (x)]2} (A.11)

UA,B = (βJ )
(
β

∣∣∣∣K + βJ 2

2

∣∣∣∣)1/2 ∫ ∞
−∞

dx√
2π

exp(−x2/2){ϕA,B
3 (x)ϕ

A,B
1 (x)

−[ϕA,B
1 (x)]2ϕ

A,B
2 (x)} (A.12)

VA,B = (βJ )2
∫ ∞
−∞

dx√
2π

exp(−x2/2){[ϕA,B
2 (x)]2− 4[ϕA,B

1 (x)]2ϕ
A,B
2 (x)+ 3[ϕA,B

1 (x)]4}.
(A.13)

Appendix B. Series expansion for the free-energy functional

In this appendix, we obtain a power-series expansion for the functionalφ given by
equation (33). We shall apply the replica symmetry hypothesis for the quadrupolar elements
(pα = p, ∀α), whereas in the neighbourhood of the SG–P critical frontier, the spin-glass
matrix elements (qαβ) will be considered as small. One gets the following expansion,

φ(p, qαβ) = −n lnD0+ 1
2nBp

2− A2

∑
αβ

(qαβ)2− A3

∑
αβγ

qαβqβγ qγα − A4

∑
αβ

(qαβ)4

−B4

∑
αβγ δ

qαβqβγ qγ δqδα + C4

∑
αβγ

(qαβ)2(qβγ )2+ · · · (B.1)

where the sums over replica labels are now completely unrestricted and the coefficients are
given by

B = β
(
K + βJ

2

2

)
(B.2a)

A2 = (βJ )2

4

[
(βJ )2

(
D2

D0

)2

− 1

]
(B.2b)

A3 = (βJ )6

6

(
D2

D0

)3

(B.2c)

A4 = (βJ )8

8

(
D2

D0

)2[3

2

(
D2

D0

)2

− D2

D0
+ 1

6

]
(B.2d)

B4 = (βJ )8

8

(
D2

D0

)4

(B.2e)

C4 = (βJ )8

8

(
D2

D0

)3(
3
D2

D0
− 1

)
(B.2f )

D0 = 1+ 2 exp(Bp) (B.2g)

D2 = 2 exp(Bp). (B.2h)
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The Parisi prescription [18] may be easily implemented in the expansion (B.1); in then→ 0
limit, we get the free-energy functional,

βf [p, q(x)] = − lnD0+ B
2
p2+ A2〈q2〉

−A3

∫ 1

0
dx

[
xq3(x)+ 3q(x)

∫ x

0
dy q2(y)

]
+ A4〈q4〉

−C4

{
〈q4〉 − 2〈q2〉2−

∫ 1

0
dx
∫ x

0
dy[q2(x)− q2(y)]2

}
−B4

{
〈q2〉2− 4〈q2〉〈q〉2−

∫ 1

0
dx
∫ x

0
dy
∫ x

0
dz

×[q(x)− q(y)]2[q(x)− q(z)]2− 4〈q〉
∫ 1

0
dx q(x)

∫ x

0
dy[q(x)− q(y)]2

}
+ · · · (B.3)

where〈qm〉 = ∫ 1
0 dx qm(x).
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